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Abstract

Least squares methods based on first-order systems have been recently
proposed and analyzed for second-order elliptic equations and systems. They
produce symmetric and positive definite discrete systems by using standard
finite element spaces. which are not required to satisfy the inf-sup condition.
In this paper, several domain decomposition algorithms for these first-order
least squares methods are studied. Some representative overlapping and
substructuring algorithms are considered in their additive and multiplicative
variants. The theoretical and numerical results obtained show that the clas-
sical convergence bounds (on the iteration operator) for standard Galerkin
discretizations are also valid for least squares methods.
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1 Introduction

Least squares methods have been proposed in recent vears for second-order el-
liptic problems. Stokes and Navier-Stokes equations; see Chang {10). Bochev
and Gunzburger [2]. Pehlivanov, Carey, and Lazarov {15!, Cai, Lazarov. Man-
teuffel. and McCormick {5). Cai, Manteuflel, and McCormick {7}. Bramble,
Lazarov, and Pasciak [3]. Bramble and Pasciak [4;. Carey. Pehlivanov, and
Vassilevski (8], Cai, Manteuffel, and McCormick [6], Bochev. Cai, Manteuffel,
and McCormick :1], and the references therein.

Among the possible approaches, we follow here the one introduced in the
very recent works of Pehlivanov, Carey. and Lazarov |13 and Cai. Manteuf-
fel. and McCormick [7]. The second-order elliptic problem it rewritten as a
first-order system and a least squares functional is introduced. The result-
ing discrete iminimization problem is associated with a bilinear form which is
continuous and elliptic on an appropriate space. Therefore, the inf-sup condi-
tion is avoided and standard finite element spaces can be used. The resulting
linear system is symmetric. positive definite and has condition number of the
same order as standard Galerkin finite element stiffness matrices. O(1/A%).
An interesting alternative approach by Bramble, Lazarov, and Pasciak [3; is
based on replacing one of the [?-terms in the least squares functional by a
discrete H~'-norm. We will not consider here suck an alternative.

The goal of this naper is to extend to these least squares methods some of
the classical domain decomposition algorithms which have been successfully
employed for standard Galerkin finite elements. \We show that optimal and
quasi-optimal convergence bounds follow easily from the standard Galerkin
case. Therefore, domain decomposition provides highly parallel and scalable
solvers also for first-order system least square discretizations. An overview of
domain decomposition methods can be found in the review papers by Chan
and Mathew [9). Dryja. Smith. and Widlund [11;. Dryja and Widlund [13].
and Le Tallec [14).

This paper is organized as follows. In the next section. we briefly review
the first-order system least squares methodology and the main results from
[7:. In Section 3, we introduce and analyze our domain decomposition algo-
rithms: overlapping additive Schwarz methods (with coupled and uncoupled
subspaces: sce 3.1). overlapping multiplicative Schwarz methods (3.2). and
an iterative substructuring method (3.3). In Section 4. we present numerical
results in the plane that confirm the theoretical bounds obtained.
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2 First-Order System Least Squares

We consider the following second-order elliptic problem on a bounded domain
QCRor R

=V .{(AVp)-Xp = f in Q.
p =0 on ['p, (1)
n-AVp = 0 on I'y.

Here A is a symmetric and uniformly pcitive definite matrix with entries in
L®(fN). X is a first-order linear differential operator. Ip UI'x = 30, and n
is the outward normal unit vector to I'y.

Defining the new flux variable u = — AVp, the system (1) can be rewTitten
as a first-order system:

u-4AYp = 0 in Q.
V-u+Xp = f in Q. 9)
p =0 on I'p. =

n-u =0 on ['y.

This svstem can be extended to the equivalent system

[ u+AVp = 0 in Q,
V.u+4Xp = f in Q.
Fx4™a =0 in Q.
1 p = 0 on I'p. (3
nu =20 on 'y,
| 2(4”) = 0 on I'p.

where V¥ x is the curl operator (in two ditnensions ¥ xu = 0 means %_% =
0) and 4,u = u x n (in two dimensions y.u=u- 7).

The following least squares functionals. G for the sysiem {2) and G for
the augmented system (3), were studied in [5] ([15) for the case X' = 0) and
'T]. respectively:

Golv.g: ) =|v+AVg !inm +: V.v=-X¢- f"ium e}
7(v.q) C Wo(div: ) x V' and

G(v.q: f) = v+ AVl L ~ 1T v+ Xg=flifam + IV 2 (A7) a0y (3)
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Y(v.q) € W x |
Here the functional spaces are defined as

Wo(die: ) = {v € H(div;N) :n - v =0 on 'y},
Wo(curld: Q) = {v € Hicurl4:0) : 1,(A"'v) = 0 on ['p}.
W = Wo(div: ) N Wo(curl4; Q).
V={qeH' (Q):9=00nTp)}.

The least squares minimization probiems for (2) and (3) are. respectively:
Find (u.p) € Wo(div; Q) x V" such that

Go(u.p; f) = v ew’ﬁgu-.mn- Go(v.q: f: (6}
Find (u.p) € W x V" such that
Gupf = il  Gv.g/). (7)

Simple calculations show that the associated variational problems are,
respectively:

Find (u, p) € Wy(div: ) x V" such that

ao(u,piv.q) = F(v.q) V(v.q) € Woidiv: Q) x U, (8)
Fizd (u,p) € W x V" such that

alu.p:v.g)= F(v.q' V(v.g)e Wx\. (9)

Here the bilinear forms are
ao(u.pv.g)=(u = AVp.v+ AV s + (V. u+ Xp.U - v 4 Xg)a.

a{u.p:v.q) = ag(u.p;v,q) + (V x (A7'u). V x (A~'W))
and the right-band side is

Fiv.q)=1f,V-v+ Xg).2.

In [3), iv was proved that ap{v.q:v.q) is equivalent to {continuous and
elliptic with respect to) the H{dre: Q) x H'(2) norm on Wo(div: 0 x V. under
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the assumption that a Poincaré-Friedrichs inequality holds for p (denoted by
assumption AQ). For the case X = 0, this was already proved in (13)].

In [7), it was proved that a(v,q: v.q) is equivalent to the [H{dir: ) ~
HicurlA;: Q) x HY(N) norm on W x V', under the same assumption A0.
Moreover. under three additional technical assumptions dencted by Al. A2.
A3. it is proven in [7] that a{v.q: v.q) is equivalent to the H'(Q)*! norm
on WxV (d=2or3):

Theorem 1 Let u,p:v.¢) = (U. V)g (v + (p. ¢)m (@ be the bilinear form
associated with the H()**! norm.

If the assumptions A0-A3 of [17 are verified. then there exist positive
consiants a and 3 such that

ab{v.q;v,9) < a{v.q:v.q) V(v.q) S W < ||

aend i} '
a(u, p; v.q) € shiu.p;u.p) *biv.q: v, g)"?
¥Y{u.p).(v.9) € W x V",

Because of the equivalence of al-.-) and &-. -). from now on we will concen-
trate on the variational problemn (9) associated with the augmented system
13).

We introduce a triangulation =, of {1} and associated finite element sub-
spaces W* x V* ¢ W x 1°. We then obtain a finite element discretization
of (9):

Find (ua.pr) € W* x V* such that

a(Wa.pa: VA a) = F(Vaqn) Y{vaqu) € W x U4 (10)
For simplicity. we consider continuous piecewise linear finite elements:
W= {veC' N :vr e AT VT e . ve W} =1 x B < 1),
V*={ge D) :qlx € AIK). VK € g€ V).
and the subscript A for discrete functious will be dropped in the rest of the

paper.

Error estimates and results on the conditioning of the resulting stiffness
matrix can be found in 3] (in (15] for the case X = 0).

Upon choosing a basis in W* and V;, the discrete problem {10) is turned
into a linear system of equations Az = 4. \Ve are going to solve such system
iteratively using domain decomposition techniques.
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3 Domain Decomposition Algorithms

We will introduce and analyze our domain decomposition algorithms in the
Schwarz framework, which has been very successful for standard Galerkin
finite elements. see [9]. (11], [12], {13]. We illustrate the main ideas on algo-
rithms that are represertative of the main classes of domain decomposition
(additive, multiplicative. overlapping. iterative substructuring). The same
analysis can be applied to the many other algorithms which have heen pro-
posed and analyzed for the standard scalar case.

We suppose that the domain Q is first triangulated by a coarse finite
element triangulation ry consisting of N subdomains 9, of diameter H. The
fine triangulation 7, is a refinement of 7. For simplicity, we suppose that
cach subdomain is the image under a smooth map of a reference cube.

3.1 Overlapping Additive Schwarz Methods

Each subdomain {1, is extended to a larger subdomain Y. consisting of all
elements of ry within a distance é from Q, (0 < § < H).

Each scalar component of our finite element space W x V* s decomposed
as in the standard scalar case:

N N N N
Y =Y Wh= oW W3 =3 Wy Vi= Yo
=] =1 =1 =]

where
Wei={ue W) supportiu) C N}, &k=1.2.3.

V= {u€ V*: supportiu) C ).

For cach scalar component, a global coarse finite element space is associated
with the coarse triangulation 7y:

Hio =W = {ue U]: uis trilinear on each subdomain N}, &£=1.23

12 =1H¥ = {pe V" pis trilinear on each subdomain 0.}

A first additive method is defined by the following decomposition of the
discrete space, which maintains the jocal and coarse coupling between the



different scalar components:
N
WA X 1t = ZW:' x VA,
i=0

The local spaces are
WAX B = WA xR W ¥ VY i=120 - N

and the coarse space is
Wixig = WHx VH o s wl o < Vo,

We define the local projection operators P, : W x 1% — W4 x V2 by
a(Pu.phiv.g) = au.p:v.q)  V(v,q) € W) x VA

and the coarse projection operator Po: W* x V' — W§ x \J by
a(Po{u.p)iv.q) = a(u.p:v.q)  V(v.q) € Wg x I

It is easy to see that the matrix form of the local projections is P, =

RTAT'R,A. where the Rjle;) = { I if et €Y

0 otherwise
trices selecting onlyv the unknowns in (1] for each component and the A, =
R;ART are the stiffness matrices of local Dirichlet problems. Analogously,
Po = RL, A;' Ry A. where RY, is the standard piecewise linear interpolation
matrix from the coarse grid 7 to the fine grid . for each component. and
Ay = Ry AR} is the coarse grid discretization of our problem (9). Let

. are the restriction ma-

N
Pml'dl = Z R
1=0

The original discrete problem is then equivalent to the preconditioned prob-
lem
Lian(u.p) = Boanr

where g = TV, P.{u.p) : see Chan and Mathew [9). In matrix form. this
problem can be written as A{~'Azx = M~'b. where the preconditioner is
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M =5 RTAT'R: + R} A7 Ry. An optimal convergence bound for this
algorithm is given in Theorem 2.

A second additive method is obtained by dropping the coupling between
the different scalar components of u and p. Uncoupled local spaces are now
defined by

Wi, = W, x {0} x {0} x {0},

W3, = {0} x W} x {0} x {0},
W3, = {0} x {0} x W}, x {0},
V! = {0} x {0} x {0} x V;*,
and the coarse spaces by
wl” = w:.o = “‘1".0 x {0} x {0} x {0},
W3 = Wi, = {0} x W x {0} x {0}.
WH = Wi, = {0 « {0 x W, x {0},
VH = VA = {0} x {0) x {0} x VM.
We then bave the following decomposition

N N N N
Whx i =S W+ Y W+ T WA 4+ Y VAo WH L WH  WH

=1 ixl =] =1
3 N N
=32 WL+ Vi
kel =0 =0

As before. we define projections A; : WA x 1" - Wt k=123 ;=
0.1~ N and P, : W x V* — VA 4 = O.1.---. X and the additive
operator

3 N N
Pcw = ZZPk.d +EP1.|-
=0

&=} 120
We note that this algorithm can equivalently be defined by the same choice
of subspaces as for P.4sy but using the bilinear form &:.-) (introduced ir
Theorem 1) instead of e(-.-) in the definition of the projections. In fact this
uncoupled preconditioner corresponds to applying four identical copies of a
scalar preconditioner to each scalar component. An optimal bound also holds
for this algorithm.



Theorem 2 There exists a positive consiant C independent of h, . H and ¢
such that H
cond(P) < C{1 + T‘-)'

where P = Py or P= P,y .

Proof. An upper bound on the spectrum of P is standard. since each point of
N belongs to a fixed number of extended subdomains independent of N (ior
example, for § < H;2 each point belongs to at most four (in 2D) or eight (in
3D) extended subdomains). A lower bound is obtained by classical Schwarz
analysis.

For P = P,;q. since we use exact projections. the theorem is equivalent
10 the following partition property {see Dryja and Widlund [13] or Chan and
Mathew [9]):
There exists a constant Co such that ¥(u.p} € W4 x V4 there exists a
decompasition (u.p) = TN (u;,pi). with (u..p,) € W} x U such that

N
3 a(u;, piwip) £ Cialu.piu.p).
=0
By the equivalence of Theorem 1. this inequality is equivalent to

n
E '[u,.pg)':”x)ux < Cg&(u,p)lf,,:)m.
i=0
which is a direct consequence of the scalar result proven by Dryja and Wid-
lund (13::

N x
>l SChth X Inlhs < Golplin.
=0 =0

with C} = C(1+ ¥).

For P = P.i. since the subspaces are the same but we use inexact
projections defined by ¥&-.-) instcad of a(-,-). we need only to show that
there exists a constant « such that a(u,p:u.p) < <bu.p:u.p) V(u,p) €
Whx VA = 0.1.--- N {see Dryja and Widlund [12]). This follows
immediately 1. 1 the equivalence of a and b.




3.2 Overlapping Multiplicative Schwarz Methods

By using the same coupled local and coarse spaces as in the additive algorithm
P . we can define a multiplicative operator:

Paue=1-(1-Px)---(I - A)I - Po).
The multiplicative algorithm consists in solving the nonsymmetric system

Paui{u.p) = Bt

by an iterative method such as GMRES.
We can also define a symmetrized multiplicative operator

Poctts =1 =1 = Po)---{I = Pxoy )T = Py)(I = Pxoy)--- (I = Py)
and a symmetrized algonithm, consisting in solving the symmetric system

Pmu.'u(u‘P' = Bmuits
by an iterative method like CG.

Theorem 8 There erists a positive constant C independent of h. H and é
such that

cond(Pawis) < €11 = 2.

The proof is again based on the extension of the scalar iesult (see. for exam-
ple. Chan and Mathew [9;) by using the equivalence of Theorem 1. Analo-
gously, multiplicative versions of P.4z2 could be built using uncoupled local
and coarse spaces.

3.3 An Iterative Substructuring Method

For a complete and detailed analysis of this class of methods, we refer to
Dryja, Smith and Widlund [11]. Here we consider only a simple represen-
tative of this class. namely the analog of Algorithin 6.2 in [11]. which is
verte:-based and has a standard coarse space. For simplicity. we only con-
sider the uncoupled additive version.



The standard first siep of nonoverlapping methods is the elimination of
the variables interior to each subdomain (at least implicitly). We then work
with the Schur complement S = Rpp — K,Tal\','}' K1 of the stiffness matrix

ve (B Em).
i hss
The reduced linear system with & involves only variables on the interface
I' = UdN, \T'p. When solving with a preconditioned iterative method, we
need only the action of S on a given vector and there is no need to assemble
S explicitly.

In the Schwarz framework, working with S corresponds to working with
the discrete harmonic subspace W* x T of the original space W* x V4,
Local spaces are associated with the geometric objects (faces F.. edges E
and vertices v;) forming the interface I'. Each scalar space is decomposed as

n*:Zu +Zu,£*2u* k=123,

and .

=X Va+L e+ L0

£ E, %

Here, fur example. li"{:,»‘ ={ueW*:u=0on Ta—=F,:). where 'y and F,,
are the set of nodes on I' and F, respectively. The other spaces are defined
analogously. As for the overlapping case. we then embed these scalar spaces
in our product space W* x 17%: for example, W} . = W, x {0} x {0} x {0}.
As a coarse space, we consider the discrete harmomc subspace of the same
coarse space used for Pugey. ie.. WH + WH o WH 4 VH \We obtain the
following decoinposition

W x i = }:Z:W':,+Ew'£+2w' + Wi

k=1 F,
+X VAT VE YTV 4V
F- E. T,

By defining as before projection operators into the subspaces. we form the
additive operator

P "z ZP‘R+2P*-£ +Epk|,.+P:(\)v

k=1 F,
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where again for k = 4 the projections are intc. the \.’,." spaces.

Theorem 4 There exists ¢ positive constani C independent of h and H such
that
cond(P,) < C(1 + log(H/M)2.

As before. the proof is based on the extension of the scalar result {see Dryja,
Smith and Widlund 11}, Theorem 6.2) by using the equivalence of Theorem
1.

4 Numerical Results

In this section, we report the resuits of numerical experiments which confirm
the optimal convergence bounds obtained in the previous sections. All the
results have been obtained with Matlak 4.2 running on Sun Sparcstations.
The model problem considered is the standard Poisson equation (A = 1. X =
0) on the unit square, withp = 0ouT'p = 3N and y.u =0on N (i.e. v, =0
on {y =0} and {y = 1}: v2 =0 on {7 = 0} and {z = 1}). The right-hand
side [ is chosen such that we have p(z, y) = sin(rx)sin(xy) as exact solution.
1 is decomposed into a regular grid of V square subdomains, with .V varyving
from 2 x 2 to § x 8. The fine grid mesh size & varies from 1/32 to 1/128.

The Krylov method used for all the symmetric problems is PCG, while
we use GMRES for the nonsymmetric problem with P,,;;. The initial guess
is always zero and the stopping criterion is |iry. 2/]jrollz < 107%. where r} is
the residual at step k.

The local and coarse problems invoived in the application of the precon-
ditioners are always solved directiy. For each method. we report the number
of iterations and Lanczos-based estimates of the condition number and the
extreme eigenvalues (except for the multiplicative algorithm. where we report
the average convergence factor instead).

Orerlapping additive methods. We have first studied the coupled method
Peany with fixed minimal overlap size § = h. The mesh size k is decreased
while the number of subdomains N is increased proportionally, so that the
subdomain size H/h = 16 is kept constant (H = 1/v'N). The results are re-
ported in Table | and clearly show a constant condition number cond( P,z ) =
Amaz/Amia. for problem sizes from 3007{.N = 4) to 48893(N = 64).
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Table 1: P.iay: Overlapping Additive Schwarz with fixed overlap size é = A.

N kT iter. cond(Poan)  Amer  Amen
T4 3216 112172 4.0045 0.3570 |
9 48| 19 12,1787 4.0068 0.3290
16 64| 20 119775  4.0050 0.3343 !
25 80 { 20 11.1639  4.0052 0.3586
36 9 | 21 123430  4.0044 0.3192
49 1121 20 11.9944  4.0050 0.3339
64 128 21 125500 4.0017 0.3191

Table 2: P,an: Overlapping Additive Schwarz with fixed number of subdo-

mains -\ =

é h“‘ tter. CMJ(P.“] ! Am:t .\,.,..

AOIR | 21 12550 40047 03191
Pho128| 1T 70316 40307 0.5651
Sh 128) 16 53769 4.0i65 0.7300
¢h 128,15 49510 41396 0.83%
Gh 128 15 46460 42170 0.9076
l6n 125 15 43125 13081 0.9511
JTh 12R] 16 43839 44008 0.9598




Table 3: Poa4; : Overlapping Additive Schwarz with fixed overlap size § = A.

CN AT iter. condiPuss)  Amer Amin
1 32 | Iv 103521  4.0050 0.3568 .
»9 48 | 20 126290  4.0051 03171 |
116 64 1 20 119811 40051 03342 |
125 S0 | 21 113821  4.0052 0.3518 |
l36 9 | 21 123458 40043 03191 |
19 112 20 119997 40052 0.3337 |
64 128 | 21 123261 10047 03197

Table 4: P44 : Overlapping Additive Schwarz with fixed number of subdo-
mains 1\. - 64;

& h Viter. cond(Pousn)  Amer Amin

k128 21 12.5261 4.0047 03197
2h 128 ) 17 ©.1206 10313 0.5661
Sh 128 | 16 5.3313 4.0777 0.7345
4h 128 | 16 3.3550 4.1442 0.9693
Sh 128 | 16 34343 4.2233 0.7742
6k 128 | 16 5.5306 43158 0.7803
™ 125 16 56176 44297 0.78%
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Table 3: Po.: and Pa.s,: Overlapping Multiplicative Schwarz with fixed
overlap size é = A.

“multiplicative (GMRES) | svmmetrized multiplicative (CG)
N & l tler. p=(riro)" iter.  cond(Pruns)  \aar Min
T 32| 3 0.1847 : 1.576  0.9994 035379
9 48! 7 0.1433 6 1.7393  0.9999 0.3749
16 64 6 0.1233 ' 1.7600  0.9999 0.568
25 80 6 0.1102 6 1.6810  0.9999 0.3948
6 9% | 6 0.1021 6 1.6940  0.9999 0.3502
49 12| 6 0.0952 6 1.6661  0.9990 0.6001
61 128 & 0.0849 6 17308 0.0999 0.6079

In Table 2. we fix the mesh size (h = 1/123) and the decomposition
{N = 64) and we varv the overlap size é from & to Th. As in the scalar case.
the condition number cond(P,.s,) improves as é increases. bevause of ...
being closer to unity. For large overlap. the improvement becomes negligible
or negative. because of the growth of A,

The same sets of resuits for the uncoupled method P42 are reported
in Table 3 and Table 4, respectively. For this simple mode. problem. the
uncoupled method is only slightly worse than the coupled one. in terms of
iteration count (some condition numbers are almost the same or even better
for P,¢a2). We point out that although .4 = I, climinating diffusive coupling
between the flux components. there is still coupling between the flux variables
and p. so the strong performance of P,.p is encouraging.

Overlapping multiplicative methods. In ‘[able 5. we compare the multi-
plicative method P, accelerated with GMRES and the symmetrized mul-
tiplicative method P, .., accelerated with CG. We consider the two methods
with minimal overlap and constant subdomain size. Since P..,;;: is nonsym-
metric, we repert the average convergence factor p = (r,/rg )" instead of the
condition number. Even if the symmetrized version is approximately twice
as expensive as the standard one. the number of iteratious is almoxt the same
for the two methods. Therefore. the symmetrized version is less efficient on
this simple problem.

14
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Table 6: P;,: Iterative Substructuring .
N h-T[iter. condiPy) mer A |
i 321 9 3.4035 1.5691 0.4610
e 481 17 T8812 18497 0.2347
6 64 | 18 78543  1.7962 0.2287
5 80 | IR 8.5822  1.8864 0.2193
3 9% | 19 9.4115  1.8511 0.1966
49 112 18 86646 1.8939 0.2185
61 128] 19  9.6532 1.8617 0.1928

lterative substructuring. Table 6 shows the results for the iterative sub-
structuring methods P, with fixed subdomain size. They clearly show a
constant bound for the condition number and the number of iterations.

5 Conclusions

In this paper. some domain decomposition algorithms have been introduced
for the discrete systems arising from first-order system least squares methods
applied to second-order elliptic problems. These recently proposed methods
allow the use of standard finite element spaces. which are not required to
satisfv the inf-sup condition.

The analysis of the domain decomposition aigorithms follows from analo-
gous results for the standard Galerkin case and the equivalence betwcen the
bilinear form associated with the least squares functional and the H!(Q2)¢*!
norm.

Optimal convergence bounds have been proven for overlapping algorithms
{additive, multiplicative, coupled. uncoupled versionsj. while quasi-optimal
bounds have been proven for iterative substructuring algorithms. Numerical
experiments on a simple model problem confirm these bounds.

Future work will investigate the performance of these algorithms for prob-
lems with convection and for elliptic systems.
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